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VECTOR SUBDIVISION SCHEMES AND MULTIPLE WAVELETS 

RONG-QING JIA, S. D. RIEMENSCHNEIDER, AND DING-XUAN ZHOU 

ABSTRACT. We consider solutions of a system of refinement equations written 
in the form 

X= a(a)0(2. -a), 

where the vector of functions X = (q1,... ,0r)T is in (Lp(R))r and a is a 
finitely supported sequence of r x r matrices called the refinement mask. As- 
sociated with the mask a is a linear operator Qa defined on (Lp(R))r by 
Qaf := E,Cz a(a)f(2. -a). This paper is concerned with the convergence of 
the subdivision scheme associated with a, i.e., the convergence of the sequence 

(Qaf).n=1,2,... in the Lp-norm. 
Our main result characterizes the convergence of a subdivision scheme as- 

sociated with the mask a in terms of the joint spectral radius of two finite ma- 
trices derived from the mask. Along the way, properties of the joint spectral 
radius and its relation to the subdivision scheme are discussed. In particular, 
the L2-convergence of the subdivision scheme is characterized in terms of the 
spectral radius of the transition operator restricted to a certain invariant sub- 
space. We analyze convergence of the subdivision scheme explicitly for several 
interesting classes of vector refinement equations. 

Finally, the theory of vector subdivision schemes is used to characterize 
orthonormality of multiple refinable functions. This leads us to construct a 
class of continuous orthogonal double wavelets with symmetry. 

1. INTRODUCTION 

We are concerned with the system of refinement equations 
r 

(1.1) rj =ZZE ajk(ax)ok(2 -.-a), jz=1,... ,r, 
aEzZ k=1 

where ajk (1 < j, k < r) are finitely supported sequences on 2, and 01,... , or are 
the unknown functions on ER. As usual, the transpose of a matrix A is denoted by 
AT. We write X for the vector (r1,... ,q5)T and, for each ae E 2, write a(cE) for 
the r x r matrix (ajk(aI))1<j,k<r. Then (1.1) can be rewritten as 

(1.2) X = j a(ab)0(2- a). 
cCEz 

The sequence a of matrices is called the refinement mask. 
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Taking the Fourier transform of both sides of (1.2), we obtain 

(1.3) ,() H((/2)q((/2), ( E , 

where 

H(() :=Ea(at)e-i/2, Cz R . 
ac-Z 

Let 

(1.4) M := H(O) = a(a)/2. 

Evidently, H is 27r-periodic. In particular, H(2k7r) H(O) = M for all k E Z. 
If ?1,... , q$ are compactly supported functions in Lp(R) (1 < p < oc), then 

there exist compactly supported functions /1,... , /S (s < r) in Lp(R) having 
linearly independent shifts such that 0 1,... , 'S generate the same shift-invariant 
space as do ?1,... ,qr (see [17]). If, in addition, q, := (?,1,... , ?r)T- is refinable 
with a finitely supported mask, then so is $ := (01,... ,) T. Since the shifts of 

,1,... V)S are linearly independent, they are stable (see [18]). Thus, without loss 
of any generality, we may assume that the shifts of q51,... , q$? are stable. Note 
that the shifts of 1, ... , 'or are stable if and only if, for any Cz ER, the sequences 
((j (( + 2k7r))kZ, j = 1, . . . , r, are linearly independent (see [18]). 

If ?,1, ... ., q$r are functions in L1 (ER) with stable shifts, it was proved by Dahmen 
and Micchelli [5] that the matrix M has a simple eigenvalue 1 and all the other 
eigenvalues of M are less than 1 in modulus. In fact, this result is valid under 
a weaker condition that the sequences (q5j(2k7r))kZ, j = 1,... ,r, are linearly 
independent. Indeed, for k E i, it follows from the refinement equation in (1.3) 
that 

0(2+1 kwr) = Mnq(2kwr), n = 1, 2)... 

Since ?,1, ... ', qr lie in L1 (ER), by the Riemann-Lebesgue lemma we have 

(1.5) lim Mnc q(2k7r) = lim q5(2 n+lkr) =O Vk E 2\ {}. 
n-->oo n-->oo 

By the assumption, the sequences (q5j(2k7r))kZ, j 1,... ,r, are linearly indepen- 
dent. If we denote by Cr the linear space of all r x I vectors of complex numbers, 
then the vectors (c1(2k7r),... , rq(2kr)))T (k E Z) span the space Cr. Let V be 
the linear subspace of Cr spanned by (cl(2k7r), . . . , q5r(2kr))T , k E Z \ {O}. If 
(?I (0)I..q. ,51r(O))T = 0, then V = Cr, and (1.5) tells us that the spectral radius of 
M is less than 1; hence q5 is identically zero. If the vector ( 0)1(), ... , q5r(O))T = 0, 
then it is an eigenvector of M corresponding to the eigenvalue 1. In this case, V 
has dimension r - 1 and is invariant under M. Therefore, 1 is a simple eigenvalue 
of M and the other eigenvalues of M are less than 1 in modulus. 

FRom the above discussion we may assume that the r x r matrix M has the 
following form: 

(1.6) M =1 01 and lim A ?= 
L0 A1 -->) 

For j = 1,... , r, we use ej to denote the jth column of the r x r identity matrix. 
Obviously, eTM = eT. 

Under the conditions in (1.6), it was proved by Heil and Colella in [12] that there 
exists a unique vector q5 of compactly supported distributions such that q5 satisfies 
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the refinement equation (1.2) and b(0) = (1, O, ... , O)T. We call such a solution the 
normalized solution of (1.2). If Xb is another distributional solution of (1.2), then 
we must have / = cqo for some constant c. 

In order to solve the refinement equation (1.2), we introduce the linear operator 
Qa on (Lp(R))r (1 < p < o0) as follows: 

(1.7) Qaf - Ja(a)f(2. -a), f E (Lp (R)). 
caEE 

If q is a fixed point of Qa, i.e., Qa$ = ?, then X is a solution of the refinement 
equation (1.2). 

Suppose f is an r x 1 initial vector of compactly supported functions in Lp(R) 
such that Qnf converges to the normalized solution ? of (1.2) in the Lp-norm 
(1 < p < oc). It will be proved in Section 2 that f satisfies the following moment 
conditions of order 1: 

(1.8) eTf(o) -1 and eTf(2k7r) = 0 Vk C Z \ {O}. 

Thus, we say that the subdivision scheme associated with the mask a converges 
in the Lp-norm (1 < p < oo) if there exists some X E (Lp(R))r such that, for 
every compactly supported vector f E (Lp(R))r satisfying the moment conditions 
of order 1, 

lim -4Q0f0_Ilp = ? 
n--oo 

If this is the case, then the limit vector 0 is the normalized solution of the refinement 
equation (1.2). In particular, if the initial vector f is chosen to be a vector of 
continuous functions, then in the case p = o, X is the uniform limit of a sequence 
of vectors of continuous functions, and therefore,-is continuous. 

Suppose 1 < q < p < 0o. If the subdivision scheme converges in the Lp-norm, 
then it also converges in the Lq-norm. 

The paper is organized as follows. In Section 2, we provide a simple necessary 
condition on the mask for the Lp-convergence of the associated subdivision scheme. 
In Section 3, we discuss the relationship between stability and convergence. In 
particular, it is shown that if there is a stable Lp-solution of the refinement equation, 
then the associated subdivision scheme converges in the Lp-norm. In Section 4, two 
matrices associated with the mask of the refinement equation are introduced and 
properties of their joint spectral radius are studied. In Section 5, we establish 
our main result which characterizes the Lp-convergence of a subdivision scheme in 
terms of the p-norm joint spectral radius of the two finite matrices derived from the 
associated mask. In Section 6, we analyze convergence of the subdivision scheme 
explicitly for several interesting classes of vector refinement equations which contain 
some isolated examples in the literature. In Section 7, a characterization of the L2- 
convergence of the subdivision scheme is given in terms of the spectral radius of the 
transition operator restricted to a certain invariant subspace. Finally, in Section 
8, we apply the theory to the construction of orthogonal multiple wavelets with 
symmetry. 

2. SUBDIVISION SCHEMES 

For 1 < p < oo, let (Lp(R1))r denote the linear space of all vectors f = 

(f1,... ,fr)T such that fl,... ,fr E Lp(R). The norm on (Lp(RT))r is defined 
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by 
r 1/p 

|]flffl= (z ffjllp) p f = (fl,... fr)T C (L (I))r 
j=l 

In what follows, we use w (f, h)p to denote the Lp-modulus of continuity of f: 

w(f, h)p := sup flf-f( - t) IlP, h > 0. 
tl?<h 

Suppose f is an r x 1 initial vector of compactly supported functions in Lp(R) 
such that Qnf converges to the normalized solution X of (1.2) in the Lp-norm 
(1 < p < xc). Let us show that f satisfies the moment conditions of order 1. To 
verify (1.8), we argue as follows. Let fn: Qnf. It follows from (1.7) that 

Qaf(() = H((/2)f((/2), c E R. 

Iterating this relation n times, we obtain 

fn(() = H(Q/2) ... H(Q/2 ) f((/2 z 
( ER. 

In particular, 

fn (2n+lk7r) =Mn f(2k7r) for k E Z and n = 1, 2 ... . 

and consequently, 

el f(2n+1kir) - efMnf(2kwr) = elf(2k7r). 

Since llfn - Ollp -* 0 as n oc, we have llfn - 5H --* 0 as n oc, and so 

lim fn(2n+1k7r) lim 0q(2n+1k7r) { {(0) for k 0, 
n--+c)o n--+c)o0 for k cZ\{10}, 

by the Riemann-Lebesgue lemma. Consequently, 

eTf (O) = lim elfn (0) Ie (O) = 1, 
n->oo 

and 

eTf(2k7r) = lim eTfn(2 +lkir) =- Vk Z 2\ {0}. 
n-*oo 

The preceding discussion tells us that a compactly supported f must satisfy the 
moment conditions of order 1 if Qnf converges to the normalized solution X of (1.2) 
in the Lp-norm (1 < p < oc). 

Suppose the normalized solution X of (1.2) lies in (Li (IR))r. If we choose f to be 
q, then Qn( = q for n = 1,2..... Thus, by what has been proved, 0 satisfies the 
moment conditions of order 1. 

By using the Poisson summation formula, we see that (1.8) is equivalent to the 
following condition: 

(2.1) EelTf a o) =1 
0aEz 

The following theorem gives a necessary condition for convergence of subdivision 
schemes. 
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Theorem 2.1. Let a: Z --+rxr be a finitely supported sequence of r x r matrices 
such that the matrix M := EOc z a(aE)/2 satisfies (1.6). If the subdivision scheme 
associated with a converges in the Lp-norm for some p, 1 < p < 00, then 

(2.2) eT f a(23) = eTZ a(23? + 1) =eT- 

Proof. Let f be an r x 1 vector of compactly supported functions in Lp (R) satisfying 
(2.1). If the subdivision scheme associated with a converges in the Lp-norm, then 
Qan(Qaf) converges in the Lp-norm. Hence, by the preceding discussion, we must 
have 

(2.3) eT Z Qaf( -aE) 1 

It follows from (1.7) that 

(2.4) S Qaf -acE) = a(/)f (2. -2E -/) 5 5 a(/ - 2a)f (2. -/3). 
0aEz aEz pEz '8EZ aEz 

We choose f to be YX, where y is an r x 1 vector of complex numbers with e Ty = 1, 
and X is the characteristic function of the unit interval [0, 1). Then f satisfies the 
moment conditions of order 1; hence Qaf also satisfies the moment conditions of 
order 1. For 0 < x < 1/2, we have f(2x) = y and f(2x- 3) = 0 for all E Z \ \{0}. 
Thus, it follows from (2.4) that 

5(Qaf)(x - aE) = , a(-2ai)y, 0 < x < 1/2. 

This in connection with (2.3) gives 

efT a(-2a)y = 1. 

Since this relation is valid for every vector y C ?Cr with eTy 1, we conclude that 

elT at-2ac) = eT 

This together with (1.6) yields 

elT , a(1 - 2a) = elT 

The proof of the theorem is complete. 0 

In the scalar case (r = 1), this result was established by Cavaretta, Dahmen, and 
Micchelli [1] for the case p = o, and by Jia [16] for the general case 1 < p < 0. 

3. STABILITY 

Let q51,... , or be compactly supported functions in Lp (R) (1 < p < 00). It is 
known (see [18]) that there exists a constant Ci > 0 such that 

r r 

|| E bj(Po)( - a) < CI1E llbjjIlp =bj E fp(Z), j = 1, ... ,jr. 
j=l aEz P j=l 
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We say that the shifts of 01,... , qr are stable, if there exists a constant C2 > 0 
such that 

|E E bj (aoji (--a) ||> C2 Ellbj Ilp V bj Cz p(Z), j = l . .. , r. 
j=1 aczz P j=l 

It was proved by Jia and Micchelli in [18] that the shifts of the functions 01, ... , qr 
are stable if and only if, for any ( E R, the sequences (qj (?+ 27ro))> z (j = 1,... , r) 
are linearly independent. 

For y = (y,... yr)T C Cr, we define 

(zr j=1 lP) l/p for 1 < p < x, 

max?<j<r Iyj I for p = ox. 

We denote by tp(7Z -Cr) the linear space of all sequences u: Z Cr such 
that u(aE) = (ul(aE),... ,Ur(aE))T for some ul,... ,Ur E tp(Z) and for all a E ZE. 
Obviously, u H-> (ul, , Ur)T is a canonical isomorphism between tpe (Z _ Cr) 
and (tp(Z))r. Thus, we may identify tp (Z -* Cr) with (ep(Z))r. The norm of 
u = (ul,... ,Ur)T is given by 

r \ 1/p 

Ilullp := E lluj 11p) 
j=1 

Equipped with this norm, (ep(Z))r becomes a Banach space. 
We denote by tp(Z _+ Crxr) the linear space of all matrices b: Z + Crxr such 

that b(a) = (bjk(aY))1<j,k<r for some bjk E tp(Z) (j, k = 1, ... , r) and for all ae E Z. 
We also identify tp(7 -+ Crxr) with (ep(x))rxr. The norm of b = (bjk)l<j,k<r is 
defined by 

r r 1 /p 

lbllp := {ZZ 
llbjkllP} 

j=1 k=1 

Let 0 = (X51 ... , qr)T be a vector of compactly supported functions in Lp (R). Then 
there exists a constant C, > 0 such that 

E b(a)0(. - a) < C, libflp Vb E (t (Z))rXr 

If, in addition, the shifts of the functions q1, ... , or are stable, then there exists a 
constant C2 > 0 such that 

S b(a)o(- - a) > C21lblIp Vb E (t (Z))rxr 

Let t(Z) denote the linear space of all sequences on Z, and let t0(Z) denote the 
linear space of all finitely supported sequences on Z. Furthermore, we denote by 
to (Z_ Cr) (resp. t0(2 -, Cr X r )) the linear space of all finitely supported sequences 
of r x 1 vectors (resp. r x r matrices). We identify t0(Z -( Cr) with (to(Z))r, and 
identify fo(Z -Crxr) with (to (Z))rXr. 

Theorem 3.1. Let a: Z Crxr be a finitely supported sequence of r x r matrices 
such that the matrix M := , a(a)/2 satisfies (1.6), and let Q = Qa be the 
linear operator given by (1.7). Suppose f = (f1 ,... , fr)T is a vector of compactly 
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supported functions in Lp(R) (1 < p < ox), f satisfies the moment conditions of 
order 1, and the shifts of f 1,... , fr are stable. If there exists a vector 0 of functions 
in Lp(R) (a vector of continuous functions in the case p = oc) such that 

lim IlQnf - qllp = 0, 
n-*oo 

then for any r x 1 vector g of compactly supported functions in Lp (R) satisfying the 
moment conditions of order 1 we also have 

lim IlQng - qllp = 0. 
n-*oo 

Proof. The proof follows the lines of [16, Theorem 2.2]. For j = 1,... ,r and 
n = O, 1, 2,. .., let ,Aj be the sequence on Z given by 

(c+1)/2n 

An,j(a) :=2 / q$ (x) dx, a cE Z. 
J/2 

In other words, An,j(a) is the average value of f3 on the interval [aE/2n, (E+ 1)/2n). 
Let bn E (ep(Z))rXr be given by 

An,j 0 .. O 

An,2 0 ... O 
bn : 

)An,r O .. O0 

Set 

fn Zbn(a) f (2. .-_) and gn : Ebn(oa) g(2n -a). 

Since f and g satisfy the moment conditions of order 1, there exists a constant 
Ci > 0 such that 

110- fnllp < Ci w(,, 1/2n)p and IIq$-gniflp < CJw(q$,1/2 n)p 

(see, e.g., [16, Theorem 2.1]). Write 

Qnf = Zan(oa) f(2n a-) and Qng = E an(a) g(2n -a), 
ofEz aEz 

where each an is an element of to(7Z __ Crxr). Thus, we obtain 

Qnf fn = Z [an(a) - bn(a)] f(2n -). 
agEz 

Since the shifts of f1,... , fr are stable, there exists a constant C2 > 0 such that 

A- bIIP< C211(fn - Qnf)(2n.) IlP 2npC211fn _ Qnf IlP 

Furthermore, 

Qng-gn = E [an(a) - bn(E)]g(2n -. ) 
0aEz 

Hence there exists a constant C3 > 0 such that 

11 (gn_Qng) (2-n.) IIP < C311 an -bnllpJ 

Combining the above estimates, we see that there exists a constant C > 0 such 
that 

Hgi - Qngllp < C Ilf - Qnf 11 
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Therefore we have 

11?- QTgllp < 119 - gnlp + lgn _ Qngil 
< |1 - gnllp + Cllfn - QnflHP 

< | -1 gn lp + C(1|s - fnllp + I ? _ Qn f II). 
But as n -* oc, 11 - gnllp 0, O 10 - fnllp - 0, and 11- _QnfIlp 0 O; hence we 
conclude that 

lim IlQng - 0.lp = ? 
n-*oo 

Let 0 = (q51... , qr$)T be the normalized solution of the refinement equation 
(1.2). Then Qaq q=S. Suppose 01,... , or lie in Lp(R) (r1,...,q are continuous 
in the case p = ox) and the shifts of them are stable. In this case, 0 must satisfy 
the moment conditions of order 1. Thus, in Theorem 3.1, we may choose f to be 
0. This gives the following result. 

Theorem 3.2. Let a: Z __ Crxr be a finitely supported sequence of r x r matrices 
such that the matrix M := E,c a(a)/2 satisfies (1.6), and let 0 = (01, ... ., 0r)T 
be the normalized solution of the refinement equation (1.2). If 01,... , or lie in 
Lp(R) (X1,... ,or are continuous in the case p = 0) and the shifts of them are 
stable, then the subdivision scheme associated with the mask a converges to 0 in the 
Lp-norm. 

In the scalar case (r = 1), this theorem was established by Cavaretta, Dahmen, 

and Micchelli [1] for the case p =-oo, and by Jia [16] for the general case 1 < p < oo. 

For the scalar case (r = 1), Jia and Wang [21] gave a characterization for the 

stability and linear independence of the shifts of a refinable function in terms of the 

refinement mask. Their results were extended by Zhou [33] to the case where the 

scaling factor is an arbitrary integer greater than 1. For the vector case (r > 1), 

stability of the shifts of multiple refinable functions was discussed by Herve [14], 
Hogan [15], and Wang [32]. Assuming the vector of refinable functions lies in 

(L2(lR))r, Shen [30] gave a characterization for L2-stability. See [23] for a related 

work. 

4. THE JOINT SPECTRAL RADIUS 

Let Qa be the linear operator given in (1.7). For an initial vector f E (Lp(IR))r, 
we have 

(4.1) Qnf 
n 

, no)( -at), n = ,2) . .. 
acEz 

where each an is independent of the choice of f. In particular, a1 a. Conse- 

quently, for n > 1 we have 

an a 
n 

(Qaf )= , an-1 (13)(Qa f ) (2 
,BEZ 

= 
S S an-1 (/)a(a)f (2 -2f3-ac) 

c'EZ /Ez 
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This establishes the following iteration relation for an (n = 1, 2.... ): 

(4.2) a, =a and an(E) = Z ani1(f)a(oa-2f3), a E Z. 
,BEZ 

For E E Z, we denote by A, = (A,(oa, 0)),,gz the bi-infinite block matrix given 
by 

(4.3) A,(at, f) :=a(E + 2c-3), a, - E7Z. 

Lemma 4.1. For a E (to(2))rxr and n = 1, 2,. .. , let an E (to(Z))rXr be given by 
the iteration relation (4-2). If a = 1+?26;2+ .* +2n-ln+2n 7, where 1, . . , En), y E 

2, then 

anm(Ol-/) = AE7n ... AEs (ay, ) V3 E Z. 

Proof. The proof proceeds by induction on n. For n = 1 and Ol = 61 + 2-y, we have 

a, (al -p) = a(Ei + 2-y -/3) = AE1 (y, 3). 

Suppose n > 1 and the lemma has been verified for n - 1. For Ol = 61 + 2ao1, where 
Oa,, 6 E 2, by the iteration relation (4.2) we have 

(4.4) an(oa -) = Zanl((,-)a(o - - 2r) = Zami(oli- r)a(Ei + 2j-p ). 

Suppose oa, 62 + *-- + 2n-2En + 2n-1y. Then by the induction hypothesis we 
have 

an_l (all-7 A En 
... AE2 (a,q)- 

This in connection with (4.4) gives 

an(oa-/3) = E En 
... 

AE2(-y, r)AEi1 (h, ) = AEn ...AE2AE (ay, 0), 

thereby completing the induction procedure. D 

In the scalar case (r = 1), Lemma 4.1 was established by Goodman, Micchelli, 
and Ward [10]. 

Lemma 4.1 motivates us to consider the joint spectral radius of a finite collection 
of linear operators. The uniform joint spectral radius was introduced by Rota and 
Strang in [29], and the p-norm joint spectral radius was introduced by Jia in [16]. 
Let us recall from [16] the definition of the p-norm joint spectral radius. 

Let V be a finite-dimensional vector space equipped with a vector norm 
For a linear operator A on V, define 

IJAII := max{ JAv }l 
livii=1 

Let A be a finite collection of linear operators on V. For a positive integer n we 
denote by An the nth Cartesian power of A: 

.A= (Alv I.... vAn) :All .... I An (EA} 

For 1 < p < ox, let 

11An11p: IIA ... AnllpA / 
(A1,... ,An)ErAn 
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and, for p = ox, define 

IA'11 lloo = max{ iA1.. A11 :(A,... ,A,) E A}n 

For 1 < p < ox, the p-norm joint spectral radius of A is defined to be 

pp(*A) := lim IIA nlll/n 

It is easily seen that this limit indeed exists, and 

lim IIA| l/n = inf IIA n11l/n 
n-o n> 

Clearly, pp (A) is independent of the choice of the vector norm on V. 
If A consists of a single linear operator A, then pp(A) = p(A), where p(A) 

denotes the spectral radius of A, which is independent of p. It is easily seen that 
p(A) < poo(A) for any element A in A. 

The above definition of joint spectral radius also applies to a finite collection of 
square matrices of the same size. Indeed, an s x s matrix can be viewed as a linear 
operator on CS. Thus, if A is a finite collection of s x s matrices, the joint spectral 
radius pp(A) is well defined for 1 < p < ox. 

Suppose A = {A1,... I A, and each Aj is a block triangular matrix: 

(4.5) Aj (3 
G 

j i 1.. m 

where E1, ... , Em are square maltrices of the same size, and so are F1, ... , Fm. In 
this case, we have the following result. 

Lemma 4.2. If the matrices A1, .. ., Am are of the form (4.5), then 

(4.6) p (AI I ... IAm) = max{pp(El, ... I Em), pp(Fl,... Fm)}, < p < oo. 

Proof. In our proof the norm of a matrix A, denoted by I A I, is chosen to be its 
maximum absolute row sum. We write p for the right-hand side of (4.6). It is easily 
seen that p < pp(Al,... , Am). Thus, it suffices to show p (Al.... ,Am) < p. 

Suppose 1 < 61, ... ., En < m. By induction on n we can easily derive that 

AE 1 *. AEn= (EE1 
.. 

EEn BEl) . En 
0 FE 1.. FEn 

where 
n 

BE1, . .,En = E EE1 ... EE k_ 1 G Ek FEk+l 
... 

FE7n- 

k=l 

Let us first establish (4.6) for p = ox. We have 

IIAE1 *.* A En 11 < max{ JEE6 . . EEn 11 + JIBE1,.- En III IIFEl 
.. . FEn 11} 

and 
n 

iIBEl,. ?ZI,En 11 ,JE l ... Eekl 11 Gk II FEk+l ... FIn 11 
k=l 

Let t be a fixed positive real number. By the very definition of the uniform joint 
spectral radius, there exists an integer K > 0 such that 

IE?l**E Ek ? (p+t)k and Fnl... Fnk ?(P+t)k, 
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provided qli,... ,rlk E{1,... ,m} and k> K. For I< k <Kwe have 

E ... Enk II < C (p + t)k and Fn,l*.F?kI?C(p+t)k, 

where 

C := max{ [iAj II/(p + t)] k j = 1 ... 7m;k =O, ... , K}. 

Note that Gj < ? Aj3 < C(p + t) for 1 < j < m. The above arguments tell us 
that 

n 

IBei.e ? ,En 11 E IlEel * EEk-1 11 JIGek 11 IF6k+l Fen 11 < nC3(p ). 

k=1 

Hence 

IlAei"Ae1 < (p+ t)n + nC3(p+ t)n for r>K. 

It follows that 

poo(A1, ... ,Am) < lim [(p + t)n + nC3(p + t)n] I/ = p + t. 
n-oo 

But t > 0 can be arbitrarily small; therefore po,(Al,. ,Am) < p, as desired. 

For the case 1 < p < ox, we observe that 

E lIE,1 
... 

EEk_lGEkFEk+l *FEn lip 

.En-M 
1<61,... < JJEE 

.. 
mk 1IPI S 1p16+ 

. 
I 

? E I{ECV" *Eek_l 1| | Gek | | Fek?l * *F6nIIP 

==[ S IEel .Eek_l l] [ S IG6,llP 
1?<61i . .. ekI1 m ? I ek m 

><[ Z IFek?** F6I|P]. 
l?ek+l**1<.Ek?m 

The rest of the proof is similar to that for the case p = 00. [D 

Now let A be a finite collection of linear operators on a normed vector space 

V, which is not necessarily finite dimensional. A subspace W of V is said to be 

invariant under A, or A-invariant, if it is invariant under every operator A in A. 
For a vector w E V, we define 

(4.7) |I AjWIIP (E(Aj,.A)eAn A1 AIAnW)l/p for 1 < p < 0, 

1max{ ItAi...An2WiI: (All ... An2)cA} for p oo. 

If the minimal A-invariant subspace W generated by w is finite dimensional, then 

we have 

lim Anw||1/n = Pp(,41w)- < p < ? x- 

See [11, Lemma 2.4] for a proof of this result. 

Let a be an element of (fo(Z))'X'. The biinfinite block matrices A, (e E 2) 
defined in (4.3) may be viewed as the linear operators on (fo(Z))r given by 

(4.8) A,v(oa) = a(e + 2a -/3)v(/), a E 2, v E NM) 
i3cez 
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For a bounded subset K of IR denote by ?(K) the subspace of fo (Z) consisting 
of all sequences supported in K. Suppose a is supported on [0, N], where N is a 
positive integer. Then, for j < 0 and k > N - 1, (f([j, k]))r is invariant under 
Ao and A1. Consequently, the minimal common invariant subspace of Ao and Al 
generated by a finite subset of (fo(Z))r is finite dimensional. 

For two elements b and c in fo (Z), the discrete convolution of b and c, denoted 
by b*c, is the element of fo(Z) defined by 

b*c(oa) = b( - )c(), a E Z. 

If b E (fo(Z))rXr and c E (fo(Z))r, then b*c E (fo(Z))r is defined in a similar way. 
For 3 E 2, we denote by 8, the sequence on Z given by 

68(af) 
I 

for a = 
\, 13){ 

foraiE2\{03. 

In particular, we write 6 for 60. Evidently, b*6, = b(. -) for any b E to(z). 
Let an (n = 1, 2, ... ) be the sequences given by the iteration relation (4.2). For 
an r x 1 vector y E Cr, we observe that any is an element in (4o(Z))r given by 
any(oa) = an(oa)y, Ol E 2. Also, y6o is the obvious element in (fo(Z))r given by 
(y&,)(o() = y if Ol = 3 and (y6,3)(oa) = 0 otherwise. Likewise, the difference operator 
V on ?(Z), V: a F-* Va, maps a sequence a on Z to the sequence Va := a(-)-a(--), 

and yV6E, is the element of (fo(Z))r given by y6,3 - Y?+1. 
For the following lemma, the underlying vector norm in (4.7) is taken to be P 

for the same value of p. 

Lemma 4.3. Let A := {Ao, A1} and v E (fo(Z))r. Then 

(4.9) II4AVIIp = IIan*vIp, 1 < p < X0. 

Consequently, the identities 

(4.10) 1Ahn(Y6&B) l = alanYllp and llAn(yV,73)llp = IIVanyIIp 

hold true for 1 < p < ox, 3E 2, andy E Cr. 

Proof. For 1 < p < x we have 
p 

|a*lpp Ella *v(al)llp =E| no-vp| 

ac:Z a~~cE7 Z ~3~P 
p Y En 

- S S|| 5AE7n Aei6p(y)v(3) | 
Ej...E{0,1} _yE7Z OEZ P 

-= S S AEn ..AE1vQY) |P 
El,E7E{0,1} n WO 

This verifies (4.9) for 1 < p < 00. For the case p = 00, we have 

an*vI = max su1} Sp EAE.n ..AEv(a1) = IIAnV I< 

as desired. Taking v = y6o in (4.9), we obtain 

||AnT(y6Q3) | = IIan( - )YIIP = IlanYIIp. 

This establishes the first identity in (4.10). Choosing v = yV6E, in (4.9), we get the 
second identity in (4.10). E 
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5. CHARACTERIZATION OF CONVERGENCE 

In this section we give a characterization for the Lp-convergence (1 < p < ox) of 
the subdivision scheme. 

Let a be an element in (fo(Z))rXr, and Ae (e E Z) the linear operators on 
(fo(Z))r given by (4.8). Let 

(5.1) U :={v E (to(72))r:eTZ v(p3) = O}. 

Lemma 5.1. Let a be an element in (fO(Z))rXr such that the matrix 
M = ,E,a(ao)/2 satisfies the conditions in (1.6). Then U is invariant under 
both Ao and A1 if and only if 

(5.2) eT Z a(23) = eT a(23 + 1) = eT. 

Proof. Suppose a satisfies the conditions in (5.2). Let v E (VO(2))r. Then for 
e = 0,1, 

eT E Aev(o) =eTZZ a(? + 2a-3)v(/3) 

E[T E a(? + 2a - ) v(p) ZeTv(3). 
/3E7Z aEz /3E7Z 

Hence v E U implies Aev E U. This shows that U is invariant under both Ao and 
A1. 

Conversely, suppose U is invariant under Ao. Since ejV6 E U, we have 
Ao(ejV6) E U for j = 1, ... , r. Hence 

eT E [a(2a) - a(2a - 1)] ej = eT , Ao(ejV6)((a) 0, j = 1,... , r. 

It follows that 

eTZ a(2a) =eT Z a(2a -1). 

But (1.6) implies 

eT > [a(2ao) + a(2a - 1)] = 2eT. 

ce7Z 

The above two relations yield the desired result (5.2). D 

Lemma 5.2. Suppose a is an element in (fO(Z))rXr satisfying (5.2). Let W be 
the common invariant subspace of Ao and A1 generated by elV6, e2, .. . , e'r, and 
let V C U be a finite dimensional invariant subspace of Ao and A1 containing W. 
Then 

pp(AoIw, AlIw) = pp(AoIv, AlIv), ?< p < x. 

Proof. Obviously, pp(AoIw, A1 Iw) < pp(AoIv, A {Iv). In order to prove the reverse 
inequality, we observe that an element v of V is a finite linear combination of the 
vectors of the form e1V6,, e26,,. . ., er6,, where 3 E 2. By (4.10) we have 

An(ejV6,) j = jAn(ejV6)jjp and jA4n(ej60)jjp = j4(j)IIP 
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for j = 1, ... r, 1 < p < o, and n = 1, 2, .... It follows that 

lim tIAnvI||/n < lim max{ IAn(eliV6)III/n, max {lU4n (ej6)Ip/nff 

= pp(AoIw,Al w). 

This shows pp(AoI v, Al I v) ? pp(Ao I w, Al I w), as desired. El 

Suppose a is supported on [0, N], where N is an integer greater than 1. If a is 
supported on [0, 1], we set N = 2. Let V := (f([0, N - 1]))r An U, where U is given 
by (5.1). 

Theorem 5.3. Let a be an element in (fo(Z))rXr such that the matrix M = 

E,a(oa)/2 satisfies the conditions in (1.6). Then the subdivision scheme as- 
sociated with a converges in the Lp-norm (1 < p < ox) if and only if the following 
two conditions are satisfied: 

(a) V is invariant under Ao and Al; 
(b) pp (Ao {v, Al {v) < 21/P . 

Proof. Let us first prove that condition (a) is necessary for the Lp-convergence of 
the subdivision scheme associated with a. By Theorem 2.1, the condition (5.2) 
is necessary for the subdivision scheme to converge in the Lp-norm. Hence U is 
invariant under Ao and A1, by Lemma 5.1. Moreover, (f([O, N - 1]))r is invariant 
under Ao and A1. Therefore, V is invariant under Ao and A1. 

In order to prove that condition (b) is necessary, we choose f = ejX, where 
1 < j < r and X is the characteristic function of the unit interval [0,1). Then by 
(4.1) we have 

Qan = Ean(a)f (2 * -a) = E [an(a)ej] X (2 -) 

where an (n = 1, 2,. .. ) are given by the iteration relation (4.2). Since X is the 
characteristic function of [0, 1), we have 

IiQanf lp = 2n/p'ianej lip. 

By Lemma 4.3, it follows that 

2-/IA (ej6)j _ -2n/pjjanejjjp = lQnf Il V3 E 2. 

For 2 < j < r, both eiX and eiX + ejx satisfy the moment conditions of order 1; 
hence both Qn(eiX) and Qn(eiX + ejX) converge to the normalized solution 0 of 
the refinement equation (1.1) in the Lp-norm. This shows that I Q(ejX)llp - 0 as 
n -> ox. Hence 

(5.3) lim 2-"/' AT(ej&6) l = 0 V Z E 2 and j = 2,... , r. 
n-+oo 

Similarly, for f = eix, we have 

Qnf -_Qf - 1/2n) = Van(oa)f(2n . -af) = 5 [Van (o)ej] x(2* -a). 

Consequently, 

2n/pj jVane1 jP Qa f-Qa f(.-1/2T)II 
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But 

lQf_ Qnf (-1/2 n) IIP 

:5 IlQnf _ Ilp + 11 - 0( - 1/2 n)j1P + IlQanf( 1/2 n) - 0(. - 1/2 n)IlP. 

Hence 1Qanf -_Qf(Q - 1/2n)Ilp - 0 as n ri - ox. By Lemma 4.3, it follows that 

(5.4) lim 2n/pjjAn(elV76)Ijp = lim 2n/p1'Vanelllp = 0 V/3 E Z. 

Therefore (5.3) and (5.4) tell us that 

lim 2 n/pIIAnjVIIP = ?. 
n--0oo 

Consequently, 

2-1/Ppp(Aojv,Aljv) = lim 2-1'/PIA4nlvlI"/n < 1. 

This completes the proof for the necessity part. 
In order to prove the sufficiency part of the theorem, we first observe from the 

proof of Lemma 5.1 that the condition (5.2) follows from (1.6) and condition (a). 
Next, choose f1 := (p and fi := y9(2r-- 2(j - 1)) for j = 2,... , r, where (o 

is the hat function supported on [0,2] satisfying p(x) = x for 0 < x < 1 and 
y9(x) = 2 - x for 1 < x < 2. Then the shifts of f1, . . . , fr are stable and the vector 
f := (f 1, . .. , fr)T satisfies the moment conditions of order 1. Thus, by Theorem 
3.1, in order to prove that the subdivision scheme associated with a converges in 
the Lp-norm, it suffices to show that Qnf converges in the Lp-norm. 

Let gj := ejfj for j = 1, .. ., r. Then f = gi + ?gr. Thus, it suffices to 
show that Qngj converges in the Lp-norm for each j = 1, . . ., r. This requires the 
following consequence of condition (b): For p :=pp(Ao lv, A Iv), any v E V, and 
any number cr in the range 2-1/pp < cr < 1, there is a constant C independent of n 
such that 

(5.5) 2-n/p jAnv jj < cr7n. 

For j = 2,... , r, we have 

Qa = [an () ej ] fj (2 -) 

By the choice of fi we obtain 

llQngjllp < 21 n/pllaneIlp = 21-n/PjjA4n(e 6)jj1, 

the last equality by Lemma 4.3. The right-hand side of this inequality converges 
to zero by (5.5) since ej6 E V. Consequently, 

lim |lQngj Ilp = ?, j =2,... ,r 
n--+oo 

It remains to deal with the case j = 1. Since p = p(2*)/2+p(2 -l1)+p(2 - 2)/2, 
we have 

Qagi = S 2 [an(al)el + an(o - 1)el]>(2n1 *-2al) 

+ 5 [an (oa)el]y9(2 n1 + -2a - 1). 
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Moreover, 

Qa +1=E [an+l1 (2al) el1] i0(p2 + -2al) 

+ E[an+1(2a+ l)el]yp(2n+?l -2o2- 1). 

Subtracting the first from the second, we obtain 

Qan+l-QaYi = Z[bn (a)el]Y9(2n+ -2a) + Z[Cn(a)el]y(2n+1 *-2a -1), 

where 

bn(a) := an+1(2a) - -an(a) - -an(a - 1) and 
2 2 

cn(a) := an+1(2a + 1) - an (a), a E 2. 

It follows that 

||Q-n+lgl Qng11 < 21-(n+l)/p (lbne1 IlP + lICne1 IlP) 

Let us estimate JIbne IIP- Suppose a 61 + 262 + *?*+ 2n-1e + 2n-y, where ay E Z 
and 61,... ,En E {O, 1}. Then by Lemma 4.1 we have 

bn(a)el = AEn ... 
A,1 V 

where 

v := Ao(e,6) - [e,6 + ei61]/2. 

Since a satisfies (5.2), it follows from the proof of Lemma 5.1 that 

E eT(Ao(ei6))(fl) = ZeTei6(/) =1 . 

Hence ,. eJv(3) = 0. This shows v E V. By (5.5) we conclude that there exists 
a constant C > 0 such that 

2-n/p II bnel llp < Can V n E N. 

Similarly, there exists a constant C > 0 such that 

2 nPlICnelllp <OcrT Vn E N. 

Therefore we obtain 

IlQn+lgl_- QnYil < 21-(n+1)/p(IIbne1IIp + IcCneliIp) < 4Crtn Vn E N. 

Since cr K 1, this shows that Qngi converges in the Lp-norm. The proof of the 
theorem is complete. O 

In the scalar case (r = 1), uniform convergence of subdivision schemes was 
considered by Micchelli and Prautzsch [27], by Daubechies and Lagarias [6], and 
by Dyn, Gregory, and Levin [8]. In particular, Daubechies and Lagarias used the 
uniform joint spectral radius in their study of regularity of refinable functions. 
Employing the p-norm joint spectral radius, Jia gave a characterization for Lp- 
convergence in [16]. 

In the vector case (r > 1), using the factorization technique proposed by Plonka 
[28], Cohen, Daubechies, and Plonka in [3] gave some sufficient conditions for Lo- 
convergence and L2-convergence of the cascade algorithm. For the case p = ox, 
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Cohen, Dyn, and Levin [4] discussed matrix subdivision schemes under a condition 
weaker than (1.6). Recently, Zhou [34] investigated existence of the solutions of the 
refinement equation (1.2) without assuming the conditions in (1.6). 

In the multidimensional case, convergence of subdivision schemes was studied by 
Han and Jia [11] for the general Lp-norm (1 < p < ox), and by Lawton, Lee, and 
Shen [24] for the L2-norm. 

6. EXAMPLES 

In this section we give examples in the case r = 2 to illustrate the general theory. 
We want to find real-valued double refinable functions q = (q1, q2)T as solutions 

to Lp-convergent subdivision schemes with matrix masks supported on [0, N], N = 
1, 2. All the parameters in this section are assumed to be real-valued. We have the 
basic restrictions from (1.6) 

(6.1) N atj)/2 = [0 F] 
j=O 

with FI1 < 1, while from Theorem 2.1 we require 

(6.2) eT(a(O) + a(2)) = eTa(l) = eT. 

To reduce the number of possibilities further, we require that the solution 0 have 
central symmetries on the support [0, N]. Specifically, in that case we will assume 
that /1 is centrally symmetric and q2 is centrally anti-symmetric. Then 

qz= [X2] 
and P =[0 2] = Pq(N-.)- 

Using this in the refinement equation (1.2), we find that 

h= PO(N- ) = Z Pa(a4)(2N-2 .-ao ) 
ceEz 

- S Pa(ao)Pb(2* +a - N) = 5 Pa(N - a)POb(2. -a). 

Thus, q will have the desired symmetries, provided 

(6.3) Pa(N - a)P = a(ao) Vao E 2. 

N = 1. From the requirements (6.1) and (6.2), the mask has the form 

(6.4) a(O) I[t 0], and a(1) I= [_ 0] 

with the restriction IY + z < 2. We choose the basis {e1V6,e26,e261} for the 
subspace V := {v E (f([0, 1]))2: eT ,3 V(O3) = 0}. With respect to this basis, 
the linear operators Ao and A1 have the following matrix representations: 

-1 t t ~0 -2t 0 

Aolv O y O and Allvz 0 z O 0 

O O z O y O 

By Lemma 4.2 applied twice, 

PP(AojvjAjjv) = max{l,p, zl}, 
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where p is the p-norm joint spectral radius of the two 1 x 1 matrices Bo = (y) and 
B1 = (z)- 

Let ={Bo, Bi}. For e1, ... . En E {O, 1} we have 
n 

BE. BEn =J7I( 
i 

ezEj)) 

j=1 

Hence for 1 < p < x0, 

IlL|pll= (lYlP + IZIP)n, 
while 

IB72 1100 = (max{IyI, IZI})n. 
Therefore we obtain the exact formula for the joint spectral radius: 

(max{l, (IYIP + JzJP)1/P} if 1 < p < 00, 
pP(AoIv AIV) max{1, Iy, IzI} if p = 00. 

All of the discussion above leads to the following example. 

Example 6.1. For 1 < p < oo, the subdivision scheme associated with the mask 
a supported in [0, 1] given by (6.4) converges in the Lp-norm to the function q := 
(01,q02)T if and only if lyIP + IzIP < 2. The subdivision scheme associated with 
this mask never converges in the-Loc-norm. Moreover, if we require the condition 
(6.3) for the central symmetry of the solution, then y = z. In this case, the 
condition reduces to IyI < 1 for any p, so that convergence holds in any Lp-norm 
with 1 < p < oo. 

N = 2. In this case, the requirements (6.1), (6.2), and (6.3) mean that the mask 
has the form 

(6.5) a(O)= [t i]j a(l)= [ p], and a(2)= [ -,j]A 

where 

(6.6) 12A + ,tl < 2. 

For the subspace 

V {v c(y([0, 1]))2: eT j v(,3)= 

we take the basis 

vi :=rnmeiV8, v2 := e28, and V3 := e261v 

where m -7 0 is a real number to be chosen. Then the matrices Ao and A1 restricted 
to V under this basis become 

2 mt -mt- 2 -mt mt- 

(6.7) Aolv : and AlIv K O , O1 
O O wll 2m 

We observe that the uniform joint spectral radius of the two matrices 

[o o] and -A A] 
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is JAI. Thus, if st = 0 and ,u = 0, then by Lemma 4.2 we find 

(6.8) poo(AoIv, A1l v) = max{ 1/2, 1A }. 

If st = 0 and [t 7& 0, then AoIv and AlIv are block triangular, and by Lemma 4.2 
we obtain 

(6.9) poo(Aolv, Allv) = maxf 1/2, II-tlpoo(Bo, BI) } 

where 
rc [1 ol A 

Bo [0 1 and B1 = c c with c=-. 

The uniform joint spectral radius of the two matrices Bo and B1 was calculated 
explicitly in [10, Proposition 3.2] and [31, Example 9.2]: 

01 if -1 <c 1/2, 

poo(Bo B) ={(c + c24c)/2 if c > 1/2, and 

t Icl if c < -1. 

This in connection with (6.9) yields 

rmax{1/2, [tl} if - 1 < A/,a < 1/2, 
(6.10) poo(AoIv,AlIv) = max{1/2,1AI} if A/bt <-1, and 

max{1, JA? + V/A2?+ 4VV 
- 

}/2 if 1/2 < A/,u. 

For the case st -7 0, we remark that 

(6.11) p.(AoJv,A1Jv) < max{ IlAoll, IJAIII} 
holds true for any matrix norm II 11 Using different norms to find an upper bound 
for the joint spectral radius via (6.11) makes the-estimate depend on the choice of 
basis used in the representation of A6Jv. However, the simple choice above does 
provide sufficient freedom to cover some cases previously discussed in the literature. 

Example 6.2. Let a be the element in (fo(Z))2X2 supported in [0, 2] given by (6.5). 
(a) If st = 0, then the subdivision scheme associated with the mask a converges 

in the LOO-norm if and only if 

max{JAI, J/tJ} < 1, A(p + 1) < 1, and A(b - 1) < 1. 

(b) If st 7& 0, then the subdivision scheme associated with the mask a converges 
in the LOO-norm if Istj < 1/4, JAI < 1/4, and J,ut < 1. 

Consequently, the normalized solution q = (01, 02)T of the refinement equation is 
continuous in each of these two cases. 

Proof. By Theorem 5.3, part (a) follows by (6.8) and (6.10). 
For part (b), we take m = s, in which case 

JJAoJvJJo= flAiJvlJo = max(2 +-2JstJ, ? 1+2J1A/t , 

and the result follows by (6.11). O 

The special case when s = 3/2, t = -1/8, A =-1/8, and [t = 1/2 giving the 
mask 

[-1/2 /4 a(l)3= 
1 0 a(2) 1/2 -3/41 

a0=[-1/8 -1/8J a()=[ 1/2J (2=[1/8 -1/8] 
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appeared in [13, ?6]. The above discussion tells us that the normalized solution q 
of the corresponding refinement equation is continuous. 

Let 0 = (0q1 ... , qr)$ be a vector of compactly supported distributions on R. 
We denote by 5(o) the shift-invariant space generated by 0q1,... , qr , that is, 

5(0) { -= l bj (af)0i) ( a^) :bi v . . . v br c 
E 4(z)}. 

If 5(o) contains all polynomials of degree less than k, then we say that q has 
accuracy k (see [13]). If 01,... ,gqr belong to Lp(R) (1 < p < oo), then 5(q) 
provides Lp-approximation order k if and only if 0 has accuracy k (see [17]). In 
[19] we provided a characterization for the accuracy of a vector of multiple refinable 
functions in terms of the corresponding mask. 

Let a be the element in (fo(Z))2X2 supported in [0, 2] given by (6.5) subject to the 
condition (6.6). Let 0 be the normalized solution of the corresponding refinement 
equation. It was proved in [19] that q has accuracy 3 if and only if 

t 34 0, [u = 1/2, and A = 1/4 + 2st. 

In this case, the condition (6.6) reduces to 

-3/4 < st < 1/4. 

Example 6.3. Let a be the element in (fo(Z))2X2 supported in [0, 2] given by (6.5) 
subject to the conditions t :A 0, [, = 1/2, A = 1/4 + 2st, and -3/4 < st < 1/4. 
Then the subdivision scheme asseciated with a converges uniformly. Consequently, 
the normalized solution 0 of the refinement equation is continuous. 

Proof. Let A, (e = 0, 1) be the linear operators on (yo(2))2 as given in (4.8). 
Suppose t 34 0, ,u = 1/2, and A = 1/4 + 2st. For the subspace 

v {v E ( ([0, 1]))2: eT E v(:) =0 

we choose the basis 

V [4t] + [4] 61 V2 =[ (6-61), and V3 =[O1(6-1). 

Then the matrices of Ao and A1 restricted to V under this basis become 

1/2 + 2st 0 0 1/2 + 2st 0 0 
Aolv = s02 1/4 0 and Allv -s/2 1/4 0 

O t 1/24 adO -t 1/21 

Both Ao v and AlIv are triangular matrices. By Lemma 4.2 we find 

poo(AoIv,A1Iv) = max{I1/2+2stI,1/2}. 

Hence p,,(Aolv,AlIv) < 1 if and only if 11/2 + 2stj < 1, i.e., -3/4 < st < 1/4. 
This shows that the subdivision scheme associated with a converges uniformly. 
Consequently, the normalized solution 0 of the refinement equation is continuous. 

R 
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7. L2-CONVERGENCE 

In this section we investigate the L2-convergence of a subdivision scheme. In the 
scalar case (r = 1), Jia [16] gave a characterization for the L2-convergence of a sub- 
division scheme in terms of the spectral radius of a certain finite matrix associated 
to the mask. His results were based on the work of Goodman, Micchelli, and Ward 
[10]. In the vector case (r > 1), assuming (2.2), Shen [30] gave a characterization 
for L2-convergence of cascade algorithms. Also see the related work of Long and 
Mo [26]. 

The symbol of an element b E fo(Z) is the Laurent polynomial given by 

b(z) := E b(a)z', z E C \ {0}. 
cxEz 

The symbols of elements in (io(Z))r or (io(Z))rXr are defined in a similar way. 
Suppose b E (fo(Z))rXr and c E (fO(Z))r. Then the symbol of b*c is given by 
b*c(z) = b(z)c(z). 

Let a be an element in (fo(Z))rXr. Define the transition operator Fa to be the 
linear mapping from (fo(Z))rXr to (fo(Z))rXr given by 

(7.1) Faw(a) := , a(2a -f3)w(f3 + -y)a(Qy)*/2, ae E 2, w E ?OM)rxr 

where a(y)* denotes the complex conjugate transpose of a(Y). The symbol of FaW 
has the following form: 

(7.2) 1aTw(e'() = , a((-l)iei(/2)V ((-l )i e/) )i e(/2) */4 c E R. 
j=O,l 

Indeed, the right-hand side of (7.2) equals 

E a(,j)w(f3)a(y)* [1 ?+(-l)'q+O-Y]e'(71+7-y)(12/4. 

Note that 1 + (-1>)1+3-y = 0 if qj + /-y is an odd integer, and 1 + (-1)>+O-'y = 2 
if 7j + /-y = 2ac for some integer a. Therefore, the right-hand side of (7.2) equals 

5 a(2a - + / y ?)w(/3)a(-y)*eis>(/2, 

which is Faw(ei(). This verifies (7.2). 
The form (7.2) of the transition operator Fa was introduced by Herve [14], and 

the form (7.1) was adopted by Goodman, Jia, and Micchelli [9]. 
Let us discuss some properties of the transition operator Fa. Suppose a is sup- 

ported on [0, Na], where Na is a positive integer. For a bounded subset K of i, 
recall that ?(K) is the linear subspace of fo (Z) consisting of all sequences supported 
on K n 2. For a positive integer N, let EN:= (f([-N, N]))rxr. Then Fa maps 
EN to E(N+Na)/2 for every integer N > Na. Suppose w is an eigenvector of Fa 
corresponding to a nonzero eigenvalue a. Then the above discussion tells us that w 
must be supported in [-Na, Na]. This shows that Fa has only finitely many nonzero 
eigenvalues. For an invariant subspace V of Fa, we define the spectral radius of 
Falv as 

p(Fa I V) := P(Fa I vnEN).- 

In particular, p(Fa) = P(Fa iEN, ) - 
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We are in a position to state the main result of this section. In the statement of 
the following theorem, we use A to denote the difference operator on Lo(Z) given 
by 

/\v := -v( --1) +2v -v(. + ), v c- o(z). 

In particular, A6: --1 + 26 - 1. 

Theorem 7.1. Let a be an element in (io(Z))rXr such that the matrix M = 

E a(a)/2 satisfies the conditions in (1.6). Let Fa be the operator given by 
(7.1). Then the subdivision scheme associated with a converges in the L2-norm if 
and only if 

p(FaIW) < 1, 

where W is the minimal invariant subspace of Fa generated by elefTA/, 2 e2,... 
ereT6. 

Before proving this theorem, we first establish two auxiliary results. 

Lemma 7.2. Suppose a is an element in (to(z))rXr. Let an (n = 1, 2,...) be given 
by the iteration relation (4.2). Then 

1 27r 

FW(a) ~1 j; a ( gi()*i h dee 

holds true for all w E (to(Z))rXr and c E EZ. 

Proof. By the iteration relation (4.2) we have 

an )= an_ I (e i2 )&(e'), c E JR. 

Hence 
2 jr 

? n(e an-V (e(eii))e-*e2ef d 

t27 

2 n- (ei2)aw(ei )ain 1 ( e)*ei2 e-T' d d& 

p47 
1 y a (ei()&(ei(/2),C(ei(/2)&(ei(/2 *nle(*-i2 n-dS 

2 
n- 

b27r 
+ a1 (ie)a&e' (/2)wCV -ei(/2 )&(e e(/ )**nl( _1 (i2)*n-1 < d 

2r 

= 2 an - (I )F>W (i ) an -l e'( )&* e - e2 - <dd 
2 

By induction on n, we obtain 

Fan w(o) = 1 j Fnw(e' )e- d 

as desired.n(ei )V(ei()&n(e'()*e-i2 < 

as desired. C] 
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Lemma 7.3. For any element v of (to(7))r, 

lim 11an*vH1 /n = /2p(Fa w), 

where W is the minimal invariant subspace of Fa generated by the element w ? 

(fo(2))rxr given by 

(7.3) w(O3):=Zv(3+y)v(y)*, /C2. 
-Ez 

Proof. Note that i(ei2) - i(gi-)v(eid)*, ; c R. Let un := an*V, n = 1, 2 .... Then 
fln(eid) = (eij)v(ei), e n CR. By Parseval's identity, we have 

1 1Un i l2 =E ij 2- i( n (ei )iin (eiT )d< ej . 

By using Lemma 7.2 we obtain 

2 nl (ei )n (ei')* d = 1 n(ei WV(ei4)in (eid)* d< - 2 Fajw(O) 

Consequently, 
r 

(7.4) |Un112= eT2 [Fan w(0) ej ? r 2 aF w. 
j=1 

On the other hand, 

IlFanWloo0 = jeyTFanW(a)ekIa c- Z, j, k = 1...r}. 

By Lemma 7.2 we have 

eT2 nFjnfw(ax)ek = jl 
T d ey 2a ()k =27r X eTne(ve(ve(*ne(*k-2a E 

r27r 
1 fj [e>Tin(ei()] [eTfn(ei()] e-i2' led . 

It follows that 

2 neT Fanw(ax)ekI < lIeT Un l2 IekuTnJ2 < flUn112. 

This is valid for all a Ec Z and all j, k = 1, . . . , r. Therefore, we obtain 

(7.5) 2jaj <F JwUnjj2 

Finally, (7.4) and (7.5) together yield 

lim 11an*v112/n = lim a - 2p(FaIw) , 

where W is the minimal invariant subspace of Fa generated by the element w. C 

Proof of Theorem 7.1. By Theorem 5.3, Lemma 5.2, and Lemma 4.3, the subdivi- 
sion scheme associated with a converges in the L2-norm if and only if 

lim 11an*V1lln/ < v'2 
n--oo 

for v = e1Vi, e28, ... e,6. But Lemma 7.3 tells us that 

lim lia l = lim [2 a 
n---+oo n~~f--400 
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where w is obtained from v via (7.3). When v = elV8, e26, . . ., e,6, the correspond- 
ing w will be eieTfA, e2eT,... ., ereTf, respectively. Let W be the minimal invari- 
ant subspace of Fa generated by those vectors. We conclude that the subdivision 
scheme associated with a converges in the L2-norm if and only if p(Fa,w) < 1. R 

Now we apply the above results for the refinement masks defined on [0, 2] by 
(6.5) and (6.6) to give a characterization for the convergence in the L2-norm. 

Let 

w [L--1 +?26 -61 0] w2 [8 [ 1 - 61] 

W3 := and W4 [ + 61 

By computation we find that 

~WI~ ~ 1/4 0 2t2 _t2 1 [WI 

7 6 F ~~W2 - s/2 A/2 +,u/4 -2t,u t,u W2 (7.6) Fa 
W3 [s2/8 sA/4 A2 + 12/2 A2/2 W3 

[W41 sL//4 2A,ut A2/2 [W4J 

The 4 x 4 matrix in (7.6) is denoted by B. Let W be the minimal invariant subspace 
of Fa generated by elefTA6 = w, and e2e2T6 = W3. 

Example 7.4. Let a be the sequence of 2 x 2 matrices given by (6.5) with the 
parameters satisfying (6.6). The subdivision scheme associated with the mask a 
converges in the L2-norm if and only if p(B) < 1, where p(B) denotes the spectral 
radius of the matrix B. In particular, if the normalized solution q of the refinement 
equation with the mask a has accuracy 3, then the subdivision scheme associated 
with the mask a converges in the L2-norm, provided 12A + pi < 2. 

Proof. By Theorem 7.1, the subdivision scheme associated with the mask a con- 
verges in the L2-norm if and only if p(Falw) < 1. We have p(Falw) < p(B) with 
equality if W contains wj for all j = 1, 2, 3,4. Thus, in order to prove the first 
statement, it suffices to show that p(Falw) < 1 implies p(B) < 1. 

Consider the case t 7& 0 first. In this case, W contains W4. If W does not contain 
w2, then we must have sA = s,u = 0. Hence 

p(Fa|w) = max{1/4,u} and p(B) = max{1/4, A/2 +?t/4j,a}, 

where a is the spectral radius of the 2 x 2 matrix 

[A2 + ? 2/2 A2/2] 

L2A[L Ay 2 

It can be easily verified that a < 1 implies IA/2?+1441 < 1. Therefore, p(FaIw) < 1 
implies p(B) < 1. 

Next, consider the case t = 0. In this case, if W does not contain W4, then we 
must have A2/2 = 0. Consequently, p(Falw) < 1 implies ft2/2 < 1. It follows that 
p(B) < 1. If W contains W4, then we have p(Falw) > c. Again, p(Fa|W) < 1 
implies p(B) < 1. 
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It remains to prove the second statement. If X has accuracy 3, then 

t #4 0, [, = 1/2, and A = 1/4+2st. 

In this case, 12A + [L < 2 is equivalent to -3/4 < st < 1/4. Moreover, we find that 
the eigenvalues of B are 1/4, 1/16, 1/4 + st, and 1/4 + 2st + 4s2t2. Thus, 

p(B) = max{1/4, 1/4 + st|, 1/4 + 2st + 4s2t2|}. 

Hence p(B) < 1 for -3/4 < st < 1/4. Therefore, Theorem 7.1 gives the desired 
conclusion. -] 

8. MULTIPLE WAVELETS 

In this section we apply the general theory on vector subdivision schemes devel- 
oped so far to the construction of orthogonal multiple wavelets. 

The first nontrivial example of continuous symmetric orthogonal double wavelets 
was constructed by Donovan, Geronimo, Hardin, and Massopust in [7] by means of 
fractal interpolation. Here we take the same approach as Chui and Lian did in [2] 
to the construction of orthogonal double wavelets by using refinement equations. 

Our starting point is the following characterization of orthonormality of the shifts 
of the normalized solution of the refinement equation in terms of the mask. Some 
different forms of this result were obtained by Long, Chen, and Yuan in [25], and 
by Shen in [30]. 

Theorem 8.1. Let a be an element jn (fo(Z))rXr such that the matrix M = 

E. za(ca)/2 satisfies (1.6), and let X$ (gv1,.. 0,)T be the normalized soluttion 
of the refinement equation 

= S a(a>)q(2 -a). 

Let 

H(Q) 5 a(at)e-"'/2, C E R. 

Then {fq(--a) j = 1,... ,r, al E Z} forms an orthonormal system in L2((R) if 
and only if 

(a) H($)HQ)* + H(? + 1r)H(? + r)* = Ir for all R E i, where Ir denotes the r x r 
identity matrix, and 

(b) the subdivision scheme associated with a converges in the L2-norm. 

Proof. By Theorem 3.2, condition (b) is necessary. Let us prove that condition (a) 
is also necessary. It is well known that {$i( -a): j 1, ... , r, o E Z } forms an 
orthonormal system in L2(IIR) if and only if 

(8.1) E +(( + 2,3-F) ( + 2,ir) * =Ir VX ER. 

But q satisfies the refinement equation with the mask a; hence 

q$(Q) = H(Q/2)q$(Q/2) V8 E R. 
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It follows that, for every R , 

Ir = ?Q(( + 2,3r)q + 2,3r)* 

= H(Q/2) [ ($/2 + 2/3ir)q$(Q/2 + 23r)*] H(Q12)* 

+ H(Q&2 + ir) [ (/2 ir + 2lir)(;/2 + ir + 2,3r)*] H(Q/2 + i)* 
/3& EZ 

= H(Q/2)H(Q/2)* + H(Q12 + ir)H(Q/2 + r)*. 

This shows that condition (a) is necessary. 
Now assume that conditions (a) and (b) are satisfied. Let f1 X[o,i) and, for 

j = 2, ... , r, let 

2j-1 

fi = : E (1)'X[k/2j,(k+l)/2j)- 
k=O 

It is easily seen that {fi ( - ) j = i,... ,r, a E Z} forms an orthonormal system 
in L2 (lR). Consequently, 

Z f(? + 2r)f? + 2,3ir)* = 
Ir V E R. 

3BEZ 

Since QafQ() = H(Q/2)f(Q/2) and condition (a) holds true, by the discussion in 
the last paragraph and induction we see that 

(8.2) Z(Qnf)^(> + 2l3ir) (Qnf)^(Q + 2/31r)* Ir Vb E R. 

We observe that f := (f I... , fr)T satisfies the moment conditions of order 1. By 
condition (b), Qnf converges to 0 in the L2-norm. Letting n -? oo in (8.2), we 
obtain (8.1), as desired. F 

It is easily seen that condition (a) of Theorem 8.1 is equivalent to the following 
condition: 

(8.3) a(a)a(a + 2-y)* 268,0Ir V-Y E Z. 

Let q = (O', ... , qr)T be a refinable vector of compactly supported functions in 
L2(lR). For k E Z, let 

Vk closureL2(R) {CZ S cj(6x) i(2k* -a): cj E to 

It is known that (Vk)kEZ forms a multiresolution of L2(lR) (see [21]). Suppose the 
shifts of $1, ... , q' are orthonormal. Let Wk be the orthogonal complement of Vk 
in Vk+1. Then L2(IR) is the orthogonal sum of Wk, k E Z. Functions fb,... ,?)r in 
Wo are called orthogonal multiple wavelets if {bi (. - a) : j = 1, . . . , r, ae E 2} is an 
orthonormal basis of Wo. If this is the case, then 
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is an orthonormal basis of L2(IR). Furthermore, if 0 1,... , g,r are compactly sup- 
ported, then gO = (g,l,. ,gr)T can be represented as 

(8.4) = (g,l . r)= 
T 

b(a)0(2. -) 

where b E (VO(M))r. The following theorem gives a characterization on b for the 
orthonormality of the shifts of 0', ,O'. 

Theorem 8.2. Let a be an element in (to(2))rXr such that the matrix M = 

E,E a(a)/2 satisfies (1.6), and let $ = ( 01,... ,?q)T be the normalized solution 
of the refinement equation 

q = , a(a)q$(2. -a) 
c:EZ 

for which {fi( -a) : j = 1,... ,r, oa E Z} forms an orthonormal system in 
L2(R). Let g = (g,l,*. ,g,r)T be the vector given in (8.4). Then g 1, ..,r are 
orthonormal mutliple wavelets for the multiresolution (Vk)k EZ if and only if 

(8.5) , a((a)b((a + 2-y)* = 0 8 E Z, 

and 

(8.6) , b(a)b(aY + 2Y)* = 26y,01r V-y E Z 

Proof. The proof follows standard arguments using the orthonormality of the in- 
teger translates of 0, the refinement equation for $, and the representation (8.4) 
to show that (8.5) is equivalent to b being orthogonal to the -y translates of 0 and 
that (8.6) is equivalent to b being orthogonal to the -y translates of itself. O 

Thus, the construction of orthogonal multiple wavelets reduces to a problem of 
matrix extension. This problem was solved by Lawton, Lee, and Shen in [22]. It 
will be interesting to know whether it is always possible to construct symmetric 
multiple wavelets if the multiple refinable functions '1, ... , q' are symmetric. 

We continue our examples of the last two sections and investigate the possibility 
of constructing orthonormal double wavelets with symmetry. 

N = 1. We use the mask from (6.4). In this case, (8.3) reduces to 

a(O)a(O)* + a(l)a(1)* 212. 

From Example 6.1, for the mask given by (6.4) 

a() t y2 
a(1 [t Zj 

the associated subdivision scheme converges in the L2-norm if and only if JyJ2 + 

Iz12 < 2. The orthonormality assumption results in the added restriction 

t2 + y2 + z2=2, if no symmetry on b is assumed, 
2t2 + y2 = 1? if y = z is assumed to provide the symmetry on q. 

In the case when y = z in the mask (6.4), we take 

b(O) := [ Lj and b(1) [j1 -j 
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Then (8.5) and (8.6) can be easily verified. With this choice of b, the vector b = 

('b1, Vb2)T given in (8.4) induces orthogonal double wavelets +1 and 'Ob2 such that 
V) is symmetric about 1/2 and V)2 is anti-symmetric about 1/2. 

A particular example is provided when t = ?4/5, and y = z = ?3/5. Then 
t2 + y2 = 1 so the shifts of 0 are orthonormal. This special mask is rational. The 
wavelets obtained for N = 1 are not continuous. 

N = 2. For N = 2 the equations (8.3) are 

a(O)a(2)* = 0 and a(O)a(0)* + a(l)a(1)* + a(2)a(2)* = 212. 

For the mask (6.5), the first of these equations yields the relations s2 = 1, t2 = A2 
and t = sA, while the second gives the additional requirement that pu2 2 - 4t2. 
We choose s = 1 and p, = V2- 4t Then the mask takes the form 

(8.7) a(0) [2 2 a(l) = [o 01 and a(2)= [2 -2 

Here the restrictions on the parameters are that 12t + ,up < 2, and, assuming we 
want a real valued solution, t2 < 1/2. From (6.7), we find that the eigenvalues of 

AoIv and A1Iv are ,2 -4t2, t + 1/2, and 0; hence 

pco(AoIv, AIv) > max 2-42, It+ 1/21}. 

For convergence in the LO-norm, p o(AO I v, Al I v) must be less than 1. This further 
restricts the parameter t to 

(8.8) -1/V2_ < t < -1/2. 

Example 8.3. The subdivisior scheme with real-valued mask (8.7) converges uni- 
formly to the normalized solution $ = (q1, q02)T which is supported on [0, 2], with 
q1 symmetric about 1 and q2 anti-symmetric about 1, and for which {q$i(. - a): 
j = 1, 2, oa E Z} forms an orthonormal system in L2(IIR) for any t satisfying (8.8). 
Moreover, for the coefficients 

(8.9) 

b(O) [1/j2 1/2,j b(l) = -] and b(2) 1= [ 1/ /22I] 

where ,u 2 - the vector 

,0 = (Xl I V S2)T b(a)0(2. -a) 

gives orthogonal double wavelets g1 and V)2, which are continuous. Moreover, g 
is symmetric about 1, and V)2 is anti-symmetric about 1. 

Proof. We first show that the subdivision scheme with mask (8.7) converges in the 
LOO-norm for any t satisfying (8.8). When we take the basis of V as 

{ me28, Me28l, -elV8 + e26 + e28i}, 

we have 

[+ t 2 t2 1 t2- _ 2 0 0 

Aolv: [ ? t/2-4t2 ? 
j and Ailv:= [2+t +t -mi 

>>;~~~~~~~~~~~~~~~~~~~ t . 
v/A2 _O ^- /t A2__ 
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It is not possible to choose an m so that the 4O,-norms are less than 1 throughout 
the range -1/V's < t < -1/2. However, this is nearly possible for the product of 
any two. For m = 2, we have 

+t2 4 +t2-4t2?t2 _( +t)- 
Aol2= 02-4t20 , 

- 2-4 t+2t) 
A4+t+t2 

- (4 +t) -(0t 

AolvAiIv+ (2 +t) - 2 
[~~?t22442 2 2 

[ 2-4t2 0 041 

1l2 + t-v/ - (2 + t) -(2 + t)2, 

t22t) t ) 

( t+ ~t2 (4 2 +t) 2-4 - 2-4t2 

AotvAotv 4? 2-2t G t 
Al|VAO|V=~ ~t (vl2+-4t 2 4 ) +t)(2+t72) (2 ~-4 t +t) .) 

( 2 +t) (+2t) ( 2 +t) (+2 2 

L 2 2 2 

[(1?t)424+t I+t2 _I+t 

It can be verified directly that the 4OO-norms of these matrices are less than 1 
for the range -1/~ < t < -1/2, and consequently, ll4l0 < 1 and therefore 
poo(AoIv, Ailv) < 1. 

When t = -1/, we choose m = 31/16 and verify directly that th t1-norm of 
both AoIv and AiIv is 31/32. By (6.11), we again have poo(Aolv,AilV) < 1. 

When the coefficients b are to be supported on [0,2], the equations (8.5) and 
(8.6) reduce to 

a(0)b(0)* ? a(1)b(1)* ? a(2)b(2)* = 0, a(0)b(2)* 0, a(2)b(0)* = 0, 

and 

b(0)b(0)* ? b(1)b(1)* ? b(2)b(2)* = 212, b(0)b(2)* = 0, b(2)b(0)* = 0. 

The coefficients (8.9) were chosen specifically to satisfy these relations. [1 

The special choice-t - -'i>/4 was considered by Chui and Lian in [2]. In 
this case, the normalized solution o (21, q42)T of the corresponding refinement 
equation has accuracy 2. In fact, this is the only choice of the parameter t such 
that q$ has accuracy 2. Chui and Lian did not prove that q$1, q$2 are functions in 
L2 (IIi) with orthogonal shifts. We have done that and more by including it in a 
construction of an entire family of orthogonal double wavelets that are continuous 
and have symmetry. 
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